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Abstract. G -invariant configurations(r, y) of Einstein-Cartan theoryon a multidi-
mensionaluniverseM are shown to be in I - 1-correspondencewith a quintuplet
(i~,~,&, ~, ‘I’) of geometricalobjects living on bundlesover physical spacetime
M = M/G. Moreover, explicit formulaefor r aregiven in termsof classifyingob-
jects.

1. INTRODUCTION

During the lastyearsa lot of work on dimensionalreductionof field theories
has beendone. At one hand dimensionalreductionof pure gauge theorieshas
been investigated see, [11, [2], [3], [4] and referencestherein. On the other
handKaluza-Klein theories(dimensionalreductionof gravity)havebeenextensi-
vely studied,both from a moreintuitive and from a mathematical(geometrical)

point of view, for the latter see[5], [6] and referencestherein. In both cases
the startingpoint is thesame.Onehas a multidimensionaluniverseM with a sym-

metry group G acting on M in a sufficiently regular way and considersa field
theory on M, whose configurationsare supposedto be G-invariant. Then one

hasto solve two problems:
1. Classificationof C-invariantconfigurations,
2. Reduction of the action — due to C-invariance— to an actionon physical
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spacetime M = M/G.
Doing this oneobtains interestingunification schemesin both abovementioned

cases. Obviously, one can also combine the two casesand considerEinstein-

-Yang-Mills systems[71.
In this paper we start to investigatedimensional reductionof a generalized

gravitational theory, namely Einstein-Cartan theory. For an excellent analysis

of this theory see [81. As far as we know, up to now only specialcasesof theo-

ries of this type have been studied within the dimensional reduction scheme,
see for example[9]. Thus, the main point of this paperis to give a full classifica-

tion of G-invariant configurationsof Einstein-Cartantheory on a multidimen-

sionaluniverse.
A secondpoint is the following: In the geometricalapproachto Kaluza-Klein

theories as developedin [5] one hasa clearunderstandingof the structuresone

dealswith, but, finally, all calculationsare done using local n-bein-techniques.

In this paperwe show that similar techniquesas developedin [3] for gaugetheo-

ries can be usedhere,and that all local considerationscan he avoided. For that

purposewe use thegaugetheoreticalformulation of gravity in the spirit of [101.

2. EINSTEIN-CARTAN THEORY ON A MULTIDIMENSIONAL UNIVERSE

Let M he a n-dimensionalmanifold and C a compact,connectedLie group

actingdifferentiably to the left on M:

(1.1) AIx G~(x,g)—~b(x,g)EM.

For clearnessof presentationwe assumeG to act without fix point, thusM(M, G)

is a principal bundle over the orbit spaceM = M/G with typical fibre G, (the
right action of G on51 is definedby ~ : = b

g g
The generalizationto the casewhen the typical fibre is a homogeneousspace

is straightforward.

A configuration of Einstein-Cartantheory on M is a pair (r, ~), where ‘y is a

(pseudo)-Riemannianmetric on 51 and r is a linear connectionon M compatible

with ‘y:

(1.2) Dy=0.

We will treat r as a connectionform in the reperbundle LM and‘y as a GL(n,R)-

-equivariantmapping

(1.3) y :LM~(Rn)*~ (R~)
5.

It is well known that the action of G lifts naturally to the bundle spaceLM. We

denotethis lift by
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(1.4) LMxC3(e,g)—÷a(e,g)ELM,

with UgE Aut (LM), a(e)= a(e,g).

Now we candefinewhat we meanby a C-invariantconfiguration:

(l.5a)

(l.5b)

Ouraim is to classifypairs (r, y) satisfying(1.2)and(1.5).

3. BUNDLE REDUCTIONSAND SPLITTINGS

Supposewe aregiven a configuration(r, ~) satisfying(1 .2) and(1 .5).

PROPOSITION3.1. Thereis a sequenceof bundlereductionsdefinedbyy and the

action of C:

(2.1) LM —* OM —~ OM —p OM,

where OM is the bundle of orthonormalframesoverM, OM a principal bundle

with typical fibre 0(m) x 0(ii —in) over M and OA~?a principal bundle with

typicalfibre 0(m) overM.

Proof The first reductionis standard[11], [12]:

(2.2) OM :=~eELM :-y(e)=fl},

where 77 E (R’~)*~ (Rn)* is in the standardbasisofR” given by i~= diag (— 1, + 1,
+ 1). The secondreductionis definedby a splitting of the tangentbundle:

(2.3) TM=VnH,

where V is the canonicalvertical distribution defined by the right groupaction,

(2.4) ç:=~(~), xEM,

6-Lie algebraof C, andH is the to V with respectto 7 orthogonalcomplement.
Splitting (2.3) is a section of the associatedbundle E = OM x O(fl)Gmfl~with

Cmn = 0(n)/(0(m) x 0(ii —m)) being the spaceof orthogonalwith respectto
~1decompositionsof R”. Treating this section as an equivariant mapping

OM —* Gmnand fixing onedecomposition~, given by

(2.5a) R’
1=RmeR’~m,

we put
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(2.5b) OM := {eE OM : ~(e) =

(For simplicity of notation we write 0(n) and 0(m) insteadof 0(n — 1, 1) and

0(m —1, 1)!).

The last reductionis not essential,but convenient.First noticethat the canoni-

cal projection 0(m) x 0(n — tn) —‘ 0(n — m) inducesa surjectivebundlehomo-

morphism

(2.6) f : OM(0(m)x 0(n —in),M) —+ 07M(0(n—m),M).

Now fix a basis (~) in 6 , take the correspondingfundamentalvector fields

(e) : = andperform a standardorthonormalizationprocedure.The result

is a sectionsin O~.We put

(2.7) OM : = {e E O~I:f(e) = s(p(e))~,

wherep is the canonicalprojectionin OM. a

PROPOSITION3 .2. Thereis a natural splitting

(2.8) TOM=VOH,

inducedby ~ and by the actionof G on 0A1.

Proof First notice that 0~i is C-invariant, and, therefore,it is a principal C-

-bundle over OM, the bundle of orthonormal(with respectto ~ — the metric
induced by the C-invariant metric ~ on A?) frameson M. The free, right action

of C on OM is definedby ö~: = a ~. (We denotethe restrictionof groupactions
g g

to subbundlesby the sameletter). Sincea is the lift of 6 we have the following

commutativediagram:
x
1

OM ~ OM

(2.9) x2

F
M 2 Xi

Now we put

(2.10)

and

(2.11) H : =

Obviously, VandH are differentiabledistributions spanningTOM.
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COROLLARY 3.1. The splitting (2.8) defines a C-connection in the bundle

OM —f OM.

Proof Obvious. •

We denotethe correspondingC-connectionform on OTA? by ~andobservethat

~ is the pull-back under of the C-connectionform definedby the splitting
(2.3).

4. CLASSIFICATION OF G-IN VARIANT CONFIGURATIONS

For a given pair (r, ‘y) satisfying (1 .2) and (1 .5) we have the sequenceof

reductions(2.1) and the C-connection(2.8). It is known that a linear con-
nectionon LM is reducibleto OM if andonly if (1 .2) is fulfilled [12].

Restricted to OM (1.2) just meansthat r is 0(n)-valued.Thus,r fulfilling
(1.2) is completely given by its values on OM, and — obviously — also by its
valueson the subbundleOM.

On the other hand ~ is constanton OM, so that the classificationproblem

is now reducedto characterizingthe restriction of r to 0M. For that purpose

we usethe decomposition[11]

(3.1) r=w+a,

wherew is the Levi-Civita connectionform correspondingto ~ anda is a tensorial

1-form of type Ad (Gl(n, R)) with values in gl(n, R). We shall denote the
restrictionsof w and a to O~iby the sameletters.Notice that (1.2) and(1.5)

imply

(3.2a) a’w =

(3.2b) aa=a.

PROPOSITION4.1. The 1-form ais completelycharacterizedby

1. A Mapping

(3.3a) OM ~e —÷ ~1’(e)E 6*0 o(n),

satisfying

(3.3b) o~’i’=Ad’g’(’I’),

whereAd’ denotesthecoadjoint representationof C in ~.

2. A 0(n)-valued1-form on 0Xi

(3.4) T—OM~X---+~(X)Eo(n).
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Proof ci is completely characterizedby its values on OM. We decomposea on
OM dueto (2.8) andput:

(3.5) ‘J!(e)(A) : = (ap)~(u~(A)), A EG,

(3.6) : =

where XH is the horizontal with respectto ~ lift of XE T~0Xi.To prove (3.3b)

we usetheC-invariance(3.2b) of a andthe fact that

(3.7) ~ ~‘o~’oAdg,ug(e) g e

whichcan be easilyverified. Then we have

~f~g(e)(A) = (ac~)~g(e)(à~(e)(A))=

= (cxç.)Fg(e)(ôoU’o Adg(A)) =

= (~j*a..)(o’ o Ad g(A)) =

= ‘I’ (Ad g(A)).

We areleft with provingthat definition (3.6) is correct.But this is a simple conse-

quenceof(3.2b).

it remains to analyzew.

PROPOSITION4.2. On OM we have

(t9(Z), w(Y) i~(X))=

(3.8)
= —(i~(fl,d~(Z,X)) + (~(Z),ds~(X,1’)) + (i3(X), di~(Y,Z)),

whereX, Y, Z E TOM, s~is the canonical1 -form [11] on OMand ( , ) is the scalar

product on W
1givenby ~1.

Proof On OM w is completelydeterminedby the equationth9 + w A z~= 0,
(vanishingof torsion).

(3.8) is obtained by solving this equation with respect to ~ — a standard

procedurewhich we omit here. U

Formula(3.8) says that w is completelydeterminedby s~and di9. For s9 we

have:

PROPOSITION4.3. The soldering form s~is on Oill completelycharacterizedby:

I. A mapping
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(3.9a) OM ~ e —~ 0(e)E 6* ® Ra
m,

satisfying

(3.9b)

2. Thesolderingform i~on OA?, with

(3.9c)

Proof ~9is completelycharacterizedby its valueson o~ci.Due to (2.8) we put:

(3.10) çb(e)(A) :=(à~)(ö~(A)),

(3.11) &(X) :=(i~)(X11),

whereagainX” is the horizontalwith respectto ~lift of X.
Using the definition of s9 and the fact that e is an adaptedframe we have:

0(e)(A) = e1 o ~ o a~’(A)= e~° ER’~m.

Formula(3.9b) is shown in the sameway as (3.3b).Definition (3.11) is correct

becausei9 is C-invariant. (0 is invariant undernatural lifts of arbitrary diffeo-

morphismsof M!).
It remainsto show that i~coincideswith the soldering form on OM. Treating

e and ~ as mappings [11], e :R~—÷ 7~(e)M~ë :R’~—* Tx(e)M~we have

C = e °

Usingthis andx o = 7r o ~r, see(2.9), we havet9~(x(X))= o o x’~(X)=
= e 1 o ir(X) = ~1~e~’~’ forXE H.

Now we want to calculate w on OM. For that purposewe use(2.8) and the
following natural — with respect to (2.5a)— decompositionof the Lie algebra

o(n):

(3.l2a) o(n)=o(m)no(n—m)nfll,

where

O A

(3.l2b) Th:= ;AEL(Rm,R’~m)

_AT ü

Being o(n)-valued w has three components,~ ~o(m) ~ ~,o(n—m) and
w3~w~1.Moreover,we will usethe following:
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LEMMA 4.1. Thereexistcanonical isomorphismns

(3.l3a) ie:(fle~)*~(Rrn)*,

(3.13b)

where~ is the vectorspacedualto = ~e!ker ir~.

Proof There exists a canonical(horizontalwith respectto the Levi-Civita con-

nection c~on OA?) vector field ~ (with values in (Rrn)*) on OXi, such that

= idL(RmRm)~

Thisfield definesanisomorphismof vectorspace:

(3.14) ~:(H~)* —~-*

where i?~ is the horizontal with respect to c~5subspaceof T~OM.Taking the
horizontal (with respectoto E) lift of H~toHe~we get an isomorphismH~=11

which implies (H~)* (H)*. Combining this with (3.14),we get the isomorphism

i. (3.l3b) is obtainedby taking j : ° A i, ~ = diag (— 1, 1 1) beingthe
Minkowski metric on R m•

PROPOSITION4.4. The decompositiondue to (2.8) of the 0(m)-componentW’

yields:

(3.15) 1. w~=x~3EH*® 0(m),

with c~beingtheLevi-Civita connectionon OA?.

(3.16) 2. ~ = (0*77) oj(X)~ A OM®o(m)ei 6*,

where0*77 : 6 —f 6* is the by ~ inducedscalarproduct on 6 and is thecurva-
ture form oft.

Proof The first point is obvious becauseof (3.9c). Using the known fact [111

that

(3.17) ver [Z, Xl = — 2o(~(Z,X)),

where Z, XE ft and ver ( ~) meansthe vertical componentwith respectto ~,
formula (3.8) givesimmediately:

(3.18) (i9~(Z),c4(Y) i9~(X))= —(Op(Y),0(E(Z, X))~,YE V.

Inserting

~(Z, X) = ~(i* o 0~(Z),i’~o t9~(X))= (0~(Z),j(~)01q(X))
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into (3.17)gives(3.16). •

PROPOSITION4.5. Thedecompositionof w
2 yields:

(3.19) 1. w~_l/2(D0o0_l_(D0o0_l)T)Eft*®o(n_m),

whereDO = dØ + ad’(~)O,with ad’ beingthe coadjointrepresentationof6 in ~‘.

2. 0*770(0_i 0 ~W~o 0) = — 1/2{0*77 0 ad —

(3.20) r —

_(0*77 oad)T13+ (0*770 ad) 12}EA OM 06* 06* ®6*,

where for A, B, CE6, 0*77oad(A,B,C)=(0(A),0([B,C])) and (0*noObo
0 ~j*w2.o0)(AB C) = (0(A), a~*w3~(B)0(cT)),T. are transpositionsin the tensor

product 6*0 6*0 6*.

Proof 1. Taking YE H and X, ZE 1, generatedbyA,B E 6, we get from (3.8):

(3.21) (0(B), c4(fl0(A))=—l/2(0(B), Y(0(A)))+ 1/2(0(A),Y(0(B))>

But Y(O(A)) = Y(0)(A)= D0(Y)(A), by thedefinition of the covariant derivati-

ve [ll}.Insertingthisinto(3.2l)gives(3.19).
2. ForX, Z, YE V, generatedbyA, B, CE ~, wehave from (3.8)

(0(B), ~*w2.(C)0(A)) =(3.22) = — 1/2 {(0(B), Y(0(A))) — (0(A), Y(çb(B))) — (0(C),X(O(B)))}.
But

Y(0(A))e= dt~
0 0@~~~~c(e))(A)=

d
= 0e~d(exp tCXA)) =

dt1~0

= ad’C(O)(A). -

Insertingthis into (3.22) gives(3.20).

Remark4.]. The right-hand-sideof (3.20) is the Levi-Civita connectionof the

metric on C inducedby thescalarproduct0*77 on 6.
Of course, in the general case those connectionswill be different for each

orbit of C onM.

PROPOSITION4.6. The decompositionof w
3yields:
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(3.23) 1. w~= 0 o(ipid) o~E12*® (J~)*® R’~~
m,

2. 0*4= 1/2 {i
0D0 o0~+ (i oD0 0 0_i)T~0

(3.24) o
0 OEAOMP(Rrn)*n R

m.

(In fact we have written down only the L(Rm,R~i_m)~componentof w3, see

(3.12b)).

Proof 1. Taking X, YEH and ZE V, generatedby A E 6, we get from (3.8)

(3.25) (0(A), w~(Y)0~(X))=— 1/2 (0(A), 0~([X, Y])).

But Oç([X, Y]) = q~((ip id) 0 Z(t9~(X),Y)).
2. Taking XEH, Y, ZE V, generatedby B, A E6, we have from (3.8):

(0(A), 0*w~p(B)OH(X)> = 1/2 {(0(A), D0(X)(B)) +

+ (0(B),D0(X)(A))}.

To obtain from this (3.24) weuse

DØ(X)(A)= D0(i*0D(X~)(A)= (i 0 D0)(A) OH(X).

Propositions4.4, 4.5 and4.6 give explicit formulaefor the Levi-Civita-connec-

tion-partof r, which will benecessaryfor investigatingfield dynamics.Moreover,
summarizing Cor. 3.1, Propositions4.1, 4.3, 4.4, 4.5 and 4.6 we obtain the

CLASSIFICATION THEOREM. A C-invariant Einstein-C~rtanconfiguration (r, ~)
is in 1-1-correspondencewith a quintupletof geometricalobjects(i~,~,0, 0, ‘I’),
wherei~is the inducedEinstein-Cartanconfigurationon OM, ~ a C-principal con-

nection in OM —+ oM, & E A oM ®(o(n —m) null) and 0 and ‘I’ are vector-

-space valued, C-equivariant functions on OM defined by (3.10) and (3.5).

Proof The only point which remainedto show is how ~ is obtained. We de-

compose0 (see (3.4)) due to (3.l2a) and put: ~ = c~+ 00(m). The remaining
two componentsof 0 give 0. •

Remark4.2. A priori classifying configurations of two different C-invariant

configurationsare living on different reducedbundles,becauseevery~ gives an

individual OM. However, we may distinquishone, say (r
0,;), and— by a verti-

cal automorphism fl of LM — relate every configuration (r, y) to ~ by taking

thegauge-equivalentconfiguration(r’, ~ with r’ = 13*r.

In that way all C-invariant configurationswill be classifiedin termsof objects
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living on thesamereducedbundleOM (resp. OM) definedby 70.

In a next paperwe shall analyzetorsion andcurvatureof C-invariantEinstein-

-Cartanconfigurationsanddiscussdynamicalaspects.
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