Classification of G-invariant configurations of Einstein-Cartan theory on a multidimensional universe

GERD RUDOLPH
Sektion Physik und Naturwissenschaftlich-Theoretisches Zentrum der Karl-Marx-Universität Leipzig,
7010 Leipzig, Karl-Marx-Platz 10/11, DDR

Abstract

G-invariant configurations (τ, γ) of Einstein-Cartan theory on a multidimensional universe M are shown to be in 1-1-correspondence with a quintuplet $(\tilde{\tau}, \xi, \hat{\alpha}, \phi, \Psi)$ of geometrical objects living on bundles over physical spacetime $\tilde{M}=M / G$. Moreover, explicit formulae for τ are given in terms of classifying objects.

1. INTRODUCTION

During the last years a lot of work on dimensional reduction of field theories has been done. At one hand dimensional reduction of pure gauge theories has been investigated see, [1], [2], [3], [4] and references therein. On the other hand Kaluza-Klein theories (dimensional reduction of gravity) have been extensively studied, both from a more intuitive and from a mathematical (geometrical) point of view, for the latter see [5], [6] and references therein. In both cases the starting point is the same. One has a multidimensional universe M with a symmetry group G acting on M in a sufficiently regular way and considers a field theory on M, whose configurations are supposed to be G-invariant. Then one has to solve two problems:

1. Classification of G-invariant configurations,
2. Reduction of the action - due to G-invariance - to an action on physical
[^0]1980 Mathematics Subject Classification: 83 E 15, 53 C 80.
space time $\tilde{M}=M / G$.
Doing this one obtains interesting unification schemes in both above mentioned cases. Obviously, one can also combine the two cases and consider Einstein-- Yang-Mills systems [7].

In this paper we start to investigate dimensional reduction of a generalized gravitational theory, namely Einstein-Cartan theory. For an excellent analysis of this theory see [8]. As far as we know, up to now only special cases of theories of this type have been studied within the dimensional reduction scheme, see for example [9]. Thus, the main point of this paper is to give a full classification of G-invariant configurations of Einstein-Cartan theory on a multidimensional universe.

A second point is the following: In the geometrical approach to Kaluza-Klein theories as developed in [5] one has a clear understanding of the structures one deals with, but, finally, all calculations are done using local n-bein-techniques. In this paper we show that similar techniques as developed in [3] for gauge theories can be used here, and that all local considerations can be avoided. For that purpose we use the gauge theoretical formulation of gravity in the spirit of [10].

2. EINSTEIN-CARTAN THEORY ON A MULTIDIMENSIONAL UNIVERSE

Let M be a n-dimensional manifold and G a compact, connected Lie group acting differentiably to the left on M :

$$
\begin{equation*}
M \times(\dot{i} \ni(x, g) \longrightarrow \delta(x, g) \in M . \tag{1.1}
\end{equation*}
$$

For clearness of presentation we assume G to act without fix point, thus $M(\tilde{M}, G)$ is a principal bundle over the orbit space $\bar{M}=M / G$ with typical fibre G, (the right action of G on M is defined by $\tilde{\delta}_{g}:=\delta_{g^{-1}}$.

The generalization to the case when the typical fibre is a homogeneous space is straightforward.

A configuration of Einstein-Cartan theory on M is a pair (τ, γ), where γ is a (pseudo)-Riemannian metric on M and τ is a linear connection on M compatible with γ :
(1.2)

$$
\begin{equation*}
D \gamma=0 . \tag{1.2}
\end{equation*}
$$

We will treat τ as a connection form in the reper bundle $L M$ and γ as a $G L(n, R)$ --equivariant mapping

$$
\begin{equation*}
\gamma: L M \longrightarrow\left(R^{n}\right)^{*} \stackrel{s}{\otimes}\left(R^{n}\right)^{*} \tag{1.3}
\end{equation*}
$$

It is well known that the action of G lifts naturally to the bundle space $L M$. We denote this lift by

$$
\begin{equation*}
L M \times G \ni(e, g) \longrightarrow \sigma(e, g) \in L M, \tag{1.4}
\end{equation*}
$$

with $\sigma_{g} \in \operatorname{Aut}(L M), \sigma_{g}(e) \equiv \sigma(e, g)$.
Now we can define what we mean by a G-invariant configuration:

$$
\begin{align*}
\sigma_{g}^{*} \tau & =\tau, \tag{1.5a}\\
\sigma_{g}^{*} \gamma & =\gamma . \tag{1.5b}
\end{align*}
$$

Our aim is to classify pairs ($\tau, \gamma)$ satisfying (1.2) and (1.5).

3. BUNDLE REDUCTIONS AND SPLITTINGS

Suppose we are given a configuration (τ, γ) satisfying (1.2) and (1.5).

PROPOSITION 3.1. There is a sequence of bundle reductions defined by γ and the action of G :

$$
\begin{equation*}
L M \longrightarrow O M \longrightarrow \widehat{O M} \longrightarrow \widehat{O M} \tag{2.1}
\end{equation*}
$$

where $O M$ is the bundle of orthonormal frames over $M, \widetilde{O M}$ a principal bundle with typical fibre $O(m) \times O(n-m)$ over M and $\widehat{O M}$ a principal bundle with typical fibre $O(m)$ over M.

Proof. The first reduction is standard [11], [12]:

$$
\begin{equation*}
O M:=\{e \in L M: \gamma(e)=\eta\}, \tag{2.2}
\end{equation*}
$$

where $\eta \in\left(R^{\eta}\right)^{*} \stackrel{s}{\otimes}\left(R^{n}\right)^{*}$ is in the standard basis of R^{n} given by $\eta=\operatorname{diag}(-1,+1$, $\ldots,+1)$. The second reduction is defined by a splitting of the tangent bundle:

$$
\begin{equation*}
T M=V \oplus H, \tag{2.3}
\end{equation*}
$$

where V is the canonical vertical distribution defined by the right group action,

$$
\begin{equation*}
V_{x}:=\widetilde{\delta}_{x}^{\prime}(\mathfrak{G}), \quad x \in M \tag{2.4}
\end{equation*}
$$

G-Lie algebra of G, and H is the to V with respect to γ orthogonal complement. Splitting (2.3) is a section of the associated bundle $E=O M \times{ }_{o(n)} G_{m, n}$, with $G_{m, n}=O(n) /(O(m) \times O(n-m))$ being the space of orthogonal with respect to η decompositions of R^{n}. Treating this section as an equivariant mapping $\zeta: O M \longrightarrow G_{m, n}$ and fixing one decomposition ζ_{0}, given by

$$
\begin{equation*}
R^{n}=R^{m} \oplus R^{n-m} \tag{2.5a}
\end{equation*}
$$

we put

$$
\begin{equation*}
\widetilde{O M}:=\left\{e \in O M: \xi(e)=\zeta_{0}\right\} . \tag{2.5b}
\end{equation*}
$$

(For simplicity of notation we write $O(n)$ and $O(m)$ instead of $O(n-1,1)$ and $O(m-1,1)!$).

The last reduction is not essential, but convenient. First notice that the canonical projection $O(m) \times O(n-m) \longrightarrow O(n-m)$ induces a surjective bundle homomorphism

$$
\begin{equation*}
f: \widetilde{O M}(O(m) \times O(n-m), M) \longrightarrow \widetilde{\widetilde{O M}}(O(n-m), M) . \tag{2.6}
\end{equation*}
$$

Now fix a basis $\left(\hat{\epsilon}_{a}\right)$ in $\widehat{\sigma}$, take the corresponding fundamental vector fields $\left(\epsilon_{a}\right)_{x}:=\widetilde{\delta}_{x}^{\prime}\left(\epsilon_{a}\right)$ and perform a standard orthonormalization procedure. The result is a section s in $\widetilde{O M}$. We put

$$
\begin{equation*}
\widehat{O M}:=\{e \in \widetilde{O M}: f(e)=s(\rho(e))\}, \tag{2.7}
\end{equation*}
$$

where ρ is the canonical projection in $\widetilde{O M}$.

PROPOSITION 3.2. There is a natural splitting

$$
\begin{equation*}
T \widehat{O M}=\hat{V} \oplus \hat{H} \tag{2.8}
\end{equation*}
$$

induced by γ and by the action of G on $\widehat{O M}$.

Proof. First notice that $\widehat{O M}$ is G-invariant, and, therefore, it is a principal G --bundle over $O \widetilde{M}$, the bundle of orthonormal (with respect to $\tilde{\gamma}$-the metric induced by the G-invariant metric γ on \widetilde{M}) frames on \widetilde{M}. The free, right action of G on $\widehat{O M}$ is defined by $\widetilde{\sigma}_{g}:=\sigma_{g^{-1}}$. (We denote the restriction of group actions to subbundles by the same letter). Since σ is the lift of δ we have the following commutative diagram:

Now we put

$$
\begin{equation*}
\hat{V}_{e}:=\tilde{\sigma}_{e}^{\prime}(\sigma) \tag{2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{H}_{e}:=\left(\pi_{1}^{\prime}\right)^{-1}\left(H_{\pi_{1}(e)}\right) . \tag{2.11}
\end{equation*}
$$

Obviously, \hat{V} and \hat{H} are differentiable distributions spanning $T O \widehat{M}$.

COROLLARY 3.1. The splitting (2.8) defines a G-connection in the bundle $\widehat{O M} \longrightarrow \widetilde{O M}$.

Proof. Obvious.

We denote the corresponding G-connection form on $\widehat{O M}$ by ξ and observe that ξ is the pull-back under π_{1} of the G-connection form defined by the splitting (2.3).

4. CLASSIFICATION OF G-INVARIANT CONFIGURATIONS

For a given pair (τ, γ) satisfying (1.2) and (1.5) we have the sequence of reductions (2.1) and the G-connection (2.8). It is known that a linear connection on $L M$ is reducible to $O M$ if and only if (1.2) is fulfilled [12].

Restricted to $O M$ (1.2) just means that τ is $o(n)$-valued. Thus, τ fulfilling (1.2) is completely given by its values on $O M$, and - obviously - also by its values on the subbundle $\widehat{O M}$.

On the other hand γ is constant on $O M$, so that the classification problem is now reduced to characterizing the restriction of τ to $\widehat{O M}$. For that purpose we use the decomposition [11]

$$
\begin{equation*}
\tau=\omega+\alpha, \tag{3.1}
\end{equation*}
$$

where ω is the Levi-Civita connection form corresponding to γ and α is a tensorial 1 -form of type $\operatorname{Ad}(G l(n, R))$ with values in $g l(n, R)$. We shall denote the restrictions of ω and α to $\widehat{O M}$ by the same letters. Notice that (1.2) and (1.5) imply

$$
\begin{align*}
& \sigma_{g}^{*} \omega=\omega, \tag{3.2a}\\
& \sigma_{g}^{*} \alpha=\alpha . \tag{3.2b}
\end{align*}
$$

PROPOSITION 4.1. The 1 -form α is completely characterized by

1. A Mapping

$$
\begin{equation*}
\widehat{O M} \ni \cdot e \longrightarrow \Psi(e) \in \mathfrak{G}^{*} \otimes o(n), \tag{3.3a}
\end{equation*}
$$

satisfying

$$
\begin{equation*}
\widetilde{\sigma}_{g}^{*} \Psi=\operatorname{Ad}^{\prime} g^{-1}(\Psi), \tag{3.3b}
\end{equation*}
$$

where Ad^{\prime} denotes the coadjoint representation of G in \mathfrak{G}^{*}.
2. A $o(n)$-valued 1 -form on $O \widetilde{M}$

$$
\begin{equation*}
T_{\widetilde{e}} O \widetilde{M} \ni X \longrightarrow \tilde{\alpha}_{\stackrel{e}{e}}(X) \in o(n) \tag{3.4}
\end{equation*}
$$

Proof. α is completely characterized by its values on $\widehat{O M}$. We decompose α on $\widehat{O M}$ due to (2.8) and put:

$$
\begin{align*}
& \Psi(e)(A):=\left(\alpha_{\hat{V}}\right)_{e}\left(\tilde{\sigma}_{e}^{\prime}(A)\right), \quad A \in \mathscr{G}, \tag{3.5}\\
& \widetilde{\alpha}_{x_{1}(e)}(X):=\left(\alpha_{\hat{H}}\right)_{e}\left(X^{\hat{H}}\right), \tag{3.6}
\end{align*}
$$

where $X^{\hat{H}}$ is the horizontal with respect to $\tilde{\xi}$ lift of $X \in T_{\widetilde{e}} O \widetilde{M}$. To prove (3.3b) we use the G-invariance (3.2b) of α and the fact that

$$
\begin{equation*}
\widetilde{\sigma}_{\tilde{\sigma}_{g}(e)}^{\prime}=\tilde{\sigma}_{g}^{\prime} \circ \tilde{\sigma}_{e}^{\prime} \circ \operatorname{Ad} g \tag{3.7}
\end{equation*}
$$

which can be easily verified. Then we have

$$
\begin{aligned}
\Psi_{\widetilde{\sigma}_{g}(e)}(A) & =\left(\alpha_{\hat{V}}\right)_{\widetilde{\sigma}_{g}(e)}\left(\widetilde{\sigma}_{\widetilde{\sigma}_{g}(e)}^{\prime}(A)\right)= \\
& =\left(\alpha_{\hat{V}}\right)_{\widetilde{\sigma}_{g}(e)}\left(\widetilde{\sigma}_{g}^{\prime} \circ \sigma_{e}^{\prime} \circ \operatorname{Ad} g(A)\right)= \\
& =\left(\widetilde{\sigma}_{g}^{*} \alpha_{\hat{V}}\right)_{e}\left(\widetilde{\sigma}_{e}^{\prime} \circ \operatorname{Ad} g(A)\right)= \\
& =\Psi_{e}(\operatorname{Ad} g(A)) .
\end{aligned}
$$

We are left with proving that definition (3.6) is correct. But this is a simple consequence of (3.2b).

It remains to analyze ω.

PROPOSITION 4.2. On OM we have

$$
\begin{align*}
& \langle\vartheta(Z), \omega(Y) \vartheta(X)\rangle= \\
= & -\langle\vartheta(Y), \mathrm{d} \vartheta(Z, X)\rangle+\langle\vartheta(Z), \mathrm{d} \vartheta(X, Y)\rangle+\langle\vartheta(X), \mathrm{d} \vartheta(Y, Z)\rangle, \tag{3.8}
\end{align*}
$$

where $X, Y, Z \in T O M, \vartheta$ is the canonical 1 -form [11] on $O M$ and \langle,$\rangle is the scalar$ product on R^{n} given by η.

Proof. On $O M \omega$ is completely determined by the equation $\mathrm{d} \vartheta+\omega \wedge \vartheta=0$, (vanishing of torsion).
(3.8) is obtained by solving this equation with respect to ω-a standard procedure which we omit here.

Formula (3.8) says that ω is completely determined by ϑ and $\mathrm{d} \vartheta$. For ϑ we have:

PROPOSITION 4.3. The soldering form ϑ is on $\widehat{O M}$ completely characterized by:

1. A mapping

$$
\begin{equation*}
\widehat{O M} \ni e \longrightarrow \phi(e) \in \mathfrak{G}^{*} \otimes R^{n-m} \tag{3.9a}
\end{equation*}
$$

satisfying

$$
\begin{equation*}
\tilde{\sigma}_{g}^{*} \phi=\operatorname{Ad}^{\prime} g^{-1}(\phi) . \tag{3:9b}
\end{equation*}
$$

2. The soldering form $\tilde{\vartheta}$ on $O \widetilde{M}$, with

$$
\begin{equation*}
\vartheta_{\hat{H}}=x_{1}^{* \tilde{\vartheta}} . \tag{3.9c}
\end{equation*}
$$

Proof. ϑ is completely characterized by its values on $\widehat{O M}$. Due to (2.8) we put:

$$
\begin{align*}
& \phi(e)(A):=\left(\vartheta_{\hat{V}}\right)_{e}\left(\widetilde{\sigma}_{e}^{\prime}(A)\right), \quad A \in \mathfrak{G} \tag{3.10}\\
& \widetilde{\vartheta}_{\widetilde{e}}(X):=\left(\vartheta_{\hat{H}}\right)_{e}\left(X^{\hat{H}}\right), \tag{3.11}
\end{align*}
$$

where again $X^{\hat{H}}$ is the horizontal with respect to ξ lift of X.
Using the definition of ϑ and the fact that e is an adapted frame we have:

$$
\phi(e)(A)=e^{-1} \circ \pi_{1}^{\prime} \circ \widetilde{\sigma}_{e}^{\prime}(A)=e^{-1} \circ \tilde{\delta}_{\pi_{1}(e)}^{\prime}(A) \in R^{n-m} .
$$

Formula (3.9b) is shown in the same way as (3.3b). Definition (3.11) is correct because ϑ is G-invariant. (ϑ is invariant under natural lifts of arbitrary diffeomorphisms of $M!$).

It remains to show that $\widetilde{\vartheta}$ coincides with the soldering form on $O \tilde{M}$. Treating e and \tilde{e} as mappings [11], $e: R^{n} \longrightarrow T_{\pi_{1}(e)} M, \tilde{e}: R^{m} \longrightarrow T_{x_{2}(e)} \widetilde{M}$, we have $e^{-1}{ }_{H}=\tilde{e}^{-1} \circ \pi_{2}^{\prime}$.

Using this and $x_{2}^{\prime} \circ x_{1}^{\prime}=\pi_{2}^{\prime} \circ \pi_{1}^{\prime}$, see (2.9), we have $\tilde{\vartheta}_{\widetilde{e}}\left(x_{1}^{\prime}(X)\right)=\tilde{e}^{-1} \circ x_{2}^{\prime} \circ x_{1}^{\prime}(X)=$ $=e^{\cdot}{ }^{1} \circ \pi_{1}^{\prime}(X)=\left(\vartheta_{\hat{H}}\right)(X)$, for $X \in \hat{H}$.

Now we want to calculate ω on $\widehat{O M}$. For that purpose we use (2.8) and the following natural - with respect to (2.5a) - decomposition of the Lie algebra $o(n)$:

$$
\begin{equation*}
o(n)=o(m) \oplus o(n-m) \oplus \mathfrak{M} \tag{3.12a}
\end{equation*}
$$

where

$$
\mathfrak{m}:=\left\{\left[\begin{array}{c|c}
O & A \tag{3.12b}\\
\hline-A^{T} & O
\end{array}\right] ; A \in L\left(R^{m}, R^{n-m}\right)\right\}
$$

Being $o(n)$-valued ω has three components, $\omega^{1} \equiv \omega^{o(m)}, \omega^{2} \equiv \omega^{o(n-m)}$ and $\omega^{3} \equiv \omega^{\mathrm{m}}$. Moreover, we will use the following:

LEMMA 4.1. There exist canonical isomorphisms

$$
\begin{align*}
& i_{e}:\left(\hat{H}_{e}^{\prime}\right)^{*} \longrightarrow\left(R^{m}\right)^{*} \tag{3.13a}\\
& j_{e}: \mathcal{R}\left(\hat{H}_{e}^{\prime}\right)^{*} \longrightarrow o(m) \tag{3.13b}
\end{align*}
$$

where $\left(\hat{H}_{e}^{\prime}\right)^{*}$ is the vector space dual to $\hat{\mathrm{H}}_{e}^{\prime}=\hat{H}_{e} / \operatorname{ker} \pi_{1}^{\prime}$.
Proof. There exists a canonical (horizontal with respect to the Levi-Civita connection $\tilde{\omega}$ on $O \widetilde{M}$) vector field \tilde{Z} (with values in $\left(R^{m}\right)^{*}$) on $O \widetilde{M}$, such that $\widetilde{\vartheta}(\tilde{\mathrm{Z}})=\mathrm{id}_{L\left(R^{m}, R^{m}\right)}$.

This field defines an isomorphism of vector space:

$$
\begin{equation*}
\tilde{z}:\left(\widetilde{H}_{\widetilde{e}}\right)^{*} \longrightarrow\left(R^{m}\right)^{*} \tag{3.14}
\end{equation*}
$$

where $\widetilde{H}_{\widetilde{e}}$ is the horizontal with respect to $\widetilde{\omega}$ subspace of $T_{\widetilde{e}} O \widetilde{M}$. Taking the horizontal (with respecto to ξ) lift of $\tilde{H}_{\widetilde{e}}$ to \hat{H}_{e}, we get an isomorphism $\widetilde{H}_{\widetilde{e}}=\hat{H}_{e}^{\prime}$ which implies $\left(\widetilde{H}_{\widehat{e}}\right)^{*} \cong\left(\hat{H}_{e}^{\prime}\right)^{*}$. Combining this with (3.14), we get the isomorphism i. (3.13b) is obtained by taking $j:=\tilde{\eta}^{-1} \circ \bigwedge^{2} i, \tilde{\eta}=\operatorname{diag}(-1,1, \ldots, 1)$ being the Minkowski metric on R^{m}.

PROPOSITION 4.4. The decomposition due to (2.8) of the o(m)-component ω^{1} yields:

$$
\begin{equation*}
\text { 1. } \quad \omega_{\hat{H}}^{1}=x_{1}^{*} \tilde{\omega} \in \hat{H}^{*} \otimes o(m) \tag{3.15}
\end{equation*}
$$

with $\widetilde{\omega}$ being the Levi-Civita connection on $O \widetilde{M}$.

$$
\begin{equation*}
\text { 2. } \quad \tilde{\sigma}^{*} \omega_{\hat{V}}^{1}=-\left(\phi^{*} \eta\right) \circ j(\Xi) \in \stackrel{0}{\wedge} \widehat{O M} \otimes O(m) \otimes \boldsymbol{\sigma}^{*} \tag{3.16}
\end{equation*}
$$

where $\phi^{*} \eta: \mathfrak{G} \longrightarrow \mathfrak{G}^{*}$ is the by ϕ induced scalar product on \mathfrak{G} and Ξ is the curvature form of ξ.

Proof. The first point is obvious because of (3.9c). Using the known fact [11] that

$$
\begin{equation*}
\operatorname{ver}[Z, X]_{e}=-2 \widetilde{\sigma}_{e}^{\prime}(\Xi(Z, X)) \tag{3.17}
\end{equation*}
$$

where $Z, X \in \hat{H}$ and $\operatorname{ver}(\cdot)$ means the vertical component with respect to ξ, formula (3.8) gives immediately:

$$
\begin{equation*}
\left\langle\vartheta_{\hat{H}}(Z), \omega_{\hat{V}}^{1}(Y) \vartheta_{\hat{H}}(X)\right\rangle=-\left\langle\vartheta_{\hat{V}}(Y), \phi(\Xi(Z, X))\right\rangle, Y \in \hat{V} . \tag{3.18}
\end{equation*}
$$

Inserting

$$
\Xi(Z, X)=\Xi\left(i^{*} \circ \vartheta_{\hat{H}}(Z), i^{*} \circ \vartheta_{\hat{H}}(X)\right)=\left\langle\vartheta_{\hat{H}}(Z), j(\Xi) \vartheta_{\widehat{H}}(X)\right\rangle
$$

into (3.17) gives (3.16).
PROPOSITION 4.5. The decomposition of ω^{2} yields:

1. $\quad \omega_{\hat{H}}^{2}=-1 / 2\left(D \phi \circ \phi^{-1}-\left(D \phi \circ \phi^{-1}\right)^{T}\right) \in \hat{H}^{*} \otimes o(n-m)$, where $D \phi=\mathrm{d} \phi+\mathrm{ad}^{\prime}(\xi) \phi$, with ad^{\prime} being the coadjoint representation of \mathfrak{G} in \mathfrak{G}^{*}.

$$
\begin{align*}
& \text { 2. } \quad \phi^{*} \eta \circ\left(\phi^{-1} \circ \tilde{\sigma}^{*} \omega_{\hat{V}}^{2} \circ \phi\right)=-1 / 2\left\{\phi^{*} \eta \circ \mathrm{ad}-\right. \\
& \left.-\left(\phi^{*} \eta \circ \mathrm{ad}\right)^{T_{13}}+\left(\phi^{*} \eta \circ \mathrm{ad}\right)^{T_{12}}\right\} \in \wedge \widehat{O M} \otimes \mathfrak{G}^{*} \otimes \mathfrak{G}^{*} \otimes \mathfrak{G}^{*}, \tag{3.20}
\end{align*}
$$

where for $A, B, C \in \mathfrak{G}, \phi^{*} \eta \circ \operatorname{ad}(A, B, C)=\langle\phi(A), \phi([B, C])\rangle$ and $\left(\phi^{*} \eta \circ \phi^{-1} \circ\right.$ $\left.\circ \widetilde{\sigma}^{*} \omega_{\hat{v}}^{2} \circ \phi\right)(A, B, C)=\left\langle\phi(A), \tilde{\boldsymbol{\sigma}}^{*} \omega_{\hat{V}}^{2}(B) \phi(C)\right\rangle, T_{i j}$ are transpositions in the tensor product $\mathfrak{G}^{*} \otimes \mathfrak{G}^{*} \otimes \mathfrak{G}^{*}$.

Proof. 1. Taking $Y \in \hat{H}$ and $X, Z \in \hat{V}$, generated by $A, B \in \mathbb{G}$, we get from (3.8):

$$
\begin{equation*}
\left\langle\phi(B), \omega_{\hat{H}}^{2}(Y) \phi(A)\right\rangle=-1 / 2\langle\phi(B), Y(\phi(A))\rangle+1 / 2\langle\phi(A), Y(\phi(B))\rangle \tag{3.21}
\end{equation*}
$$

But $Y(\phi(A))=Y(\phi)(A)=D \phi(Y)(A)$, by the definition of the covariant derivative [11]. Inserting this into (3.21) gives (3.19).
2. For $X, Z, Y \in \hat{V}$, generated by $A, B, C \in \mathbb{G}$, we have from (3.8)

$$
\begin{align*}
& \left\langle\phi(B), \tilde{\sigma}^{*} \omega_{\hat{V}}^{2}(C) \phi(A)\right\rangle= \tag{3.22}\\
= & -1 / 2\{\langle\phi(B), Y(\phi(A))\rangle-\langle\phi(A), Y(\phi(B))\rangle-\langle\phi(C), X(\phi(B))\rangle\} .
\end{align*}
$$

But

$$
\begin{aligned}
Y(\phi(A))_{e} & =\frac{\mathrm{d}}{\mathrm{~d} t_{\mid t=0}} \phi\left(\widetilde{\sigma}_{\exp t C}(e)\right)(A)= \\
& =\frac{\mathrm{d}}{\mathrm{~d} t_{\mid t=0}} \phi_{e}(\operatorname{Ad}(\exp t C)(A))= \\
& =\operatorname{ad}^{\prime} C(\phi)(A) .
\end{aligned}
$$

Inserting this into (3.22) gives (3.20).

Remark 4.1. The right-hand-side of (3.20) is the Levi-Civita connection of the metric on G induced by the scalar product $\phi^{*} \eta$ on \mathfrak{G}.

Of course, in the general case those connections will be different for each orbit of G on M.

PROPOSITION 4.6. The decomposition of ω^{3} yields:

$$
\begin{gather*}
\text { 1. } \quad \omega_{\hat{H}}^{3}=-\phi \circ(i \otimes \mathrm{id}) \circ \Xi \in \hat{H}^{*} \otimes\left(R^{m}\right)^{*} \otimes R^{n-m} \tag{3.23}\\
\text { 2. } \quad \widetilde{\sigma}^{*} \omega_{\hat{V}}^{3}=1 / 2\left\{i \circ D \phi \circ \phi^{-1}+\left(i \circ D \phi \circ \phi^{-1}\right)^{T}\right\} \circ \\
\circ \phi \in \stackrel{\wedge}{\hat{O M} \otimes\left(R^{m}\right)^{*} \otimes R^{m}} \tag{3.24}
\end{gather*}
$$

(In fact we have written down only the $L\left(R^{m}, R^{n-m}\right)$-component of ω^{3}, see (3.12b)).

Proof. 1. Taking $X, Y \in \hat{H}$ and $Z \in \hat{V}$, generated by $A \in \hat{G}$, we get from (3.8)

$$
\begin{equation*}
\left\langle\phi(A), \omega_{\hat{H}}^{3}(Y) \vartheta_{\hat{H}}(X)\right\rangle=-1 / 2\left\langle\phi(A), \vartheta_{\hat{V}}([X, Y])\right\rangle \tag{3.25}
\end{equation*}
$$

But $\vartheta_{\hat{V}}([X, Y])=\phi\left((i \otimes \mathrm{id}) \circ \Xi\left(\vartheta_{\hat{H}}(X), Y\right)\right)$.
2. Taking $X \in \hat{H}, Y, Z \in \hat{V}$, generated by $B, A \in \mathcal{G}$, we have from (3.8):

$$
\begin{aligned}
\left\langle\phi(A), \tilde{\sigma}^{*} \omega_{\hat{V}}^{3}(B) \vartheta_{H}(X)\right\rangle & =1 / 2\{\langle\phi(A), D \phi(X)(B)\rangle+ \\
& +\langle\phi(B), D \phi(X)(A)\rangle\}
\end{aligned}
$$

To obtain from this (3.24) we use

$$
D \phi(X)(A)=D \phi\left(i^{*} \vartheta_{\hat{H}}(X)\right)(A)=(i \circ D \phi)(A) \vartheta_{H}(X)
$$

Propositions 4.4, 4.5 and 4.6 give explicit formulae for the Levi-Civita-connec-tion-part of τ, which will be necessary for investigating field dynamics. Moreover, summarizing Cor. 3.1 , Propositions $4.1,4.3,4.4,4.5$ and 4.6 we obtain the

CLASSIFICATION THEOREM. A G-invariant Einstein-Cartan configuration (τ, γ) is in 1-1-correspondence with a quintuplet of geometrical objects $(\hat{\tau}, \xi, \hat{\alpha}, \phi, \Psi)$, where $\tilde{\tau}$ is the induced Einstein-Cartan configuration on $O \widetilde{M}, \xi$ a G-principal connection in $\widehat{O M} \rightarrow O \widetilde{M}, \hat{\alpha} \in \grave{\wedge} O \widetilde{M} \otimes(o(n-m) \oplus \mathrm{m})$ and ϕ and Ψ are vector--space valued, G-equivariant functions on $\widehat{O M}$ defined by (3.10) and (3.5).

Proof. The only point which remained to show is how $\tilde{\tau}$ is obtained. We decompose $\tilde{\alpha}$ (see (3.4)) due to (3.12a) and put: $\tilde{\tau}=\tilde{\omega}+\widetilde{\alpha}^{o(m)}$. The remaining two components of $\tilde{\alpha}$ give $\hat{\alpha}$.

Remark 4.2. A priori classifying configurations of two different G-invariant configurations are living on different reduced bundles, because every γ gives an individual $\widehat{O M}$. However, we may distinquish one, say $\left(\tau_{0}, \gamma_{0}\right)$, and - by a vertical automorphism β of $L M$ - relate every configuration (τ, γ) to γ_{0} by taking the gauge-equivalent configuration $\left(\tau^{\prime}, \gamma_{0}\right)$, with $\tau^{\prime}=\beta^{*} \tau$.

In that way all G-invariant configurations will be classified in terms of objects
living on the same reduced bundle $\widehat{O M}$ (resp. $O \widetilde{M}$) defined by γ_{0}.
In a next paper we shall analyze torsion and curvature of G-invariant Einstein-

- Cartan configurations and discuss dynamical aspects.

REFERENCES

[1] P. FORGACS and N.S. MANTON: Space time symmetries in gauge theories, Comm. Math. Phys., 72, 15.34, (1980).
[2] I. HARNAD, S. ShNiDER and J. Tafel: Group actions on principal bundles and dimensional reduction, Lett. Math. Phys., 4, 107-113, (1980).
[3] G. RUDOLPH and I. VOLOBUJEV: Geometrical approach to dimensional reduction of symmetric gauge fields, Theor. Math. Phys., 62, 3, 388-399 (1985).
[4] A. JadCZYK and K. PILCH: Geometry of gauge fields on a multidimensional universe, Lett. Math. Phys. 8, 97-104, (1984).
[5] A. Jadczyk and R. Coqueraux: Geometry of multidimensional universes, Comm. Math. Phys. 90, 97-100, (1983).
[6] A. Jadczyk: Symmetry of Einstein-Yang-Mills systems and dimensional reduction, J. Geom. Phys. 1, 97-104, (1984).
[7] A. JADCZYK and R. COQUEREAUX: Symmetries of Einstein-Yang-Mills fields and dimensional reduction, Comm. Math. Phys. 98, 79-104, (1985).
[8] A. Trautman: On the structure of the Einstein-Cartan equations, Ist. Nazionale di Alta Matem., Symposia Mathematica, Vol. XII, 139-162, (1973).
[9] Yong-SHI WU and A. Zee: Massless fermions and Kaluza-Klein theory with torsion, J. Math. Phys. 25, 9, 2696-2703, (1984).
[10] A. Trautman: Fiber bundles, gauge fields, and gravitation, Gen. Relativity and Grav., Vol. 1, 287-308, (1980).
[11] S. KObayashi and K. Nomizu: Foundations of Differential Geometry, Interscience, New York, (Vol. I, 1963; Vol. II, 1969).
[12] R. Sulanke and P. Wintgen: Differentialgeometrie und Faserbündel, VEB Deutscher Verlag der Wissenschaften, Berlin 1972.
[13] L.B. HUDSON and R. KANTOWSKI: Higgs fields from symmetric connections - the bundle picture, J. Math. Phys. 25 (10), 3094-3104 (1984).
[14] R. KERNER: Multiple fiber bundles and gauge theories of higher order, J. Math. Phys. 24 (2), 356-360(1983).
[15] L. Nikolova and V.A. Rizov: The Role of a Vector-Valued Field in Multidimensional Universe Geometry, Lett. Math. Phys. 10, 315 - 323 (1985).
[16] G. Chapline and N.S. MANTON: The geometrical significance of certain Higgs potentials, Nucl. Phys. B 194, 319 - 405 (1981).
[17] M. Chaichian, A.P. Demichev, N.F. NELIPA and A.YU. Rodonov: Geometrical method of spontaneous symmetry breaking in terms of higher dimensional fiber bundles and the standard model of electroweak interactions, Nucl. Phys. B 279, 452-464 (1987).

Manuscript received: December 11, 1986.

[^0]: Key-Words: Kaluza Klein theories, Einstein Cartan theory.

