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Classification of G-invariant configurations
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Abstract. G-invariant configurations (1,v) of Einstein-Cartan theory on a multidi-
mensional universe M are shown to be in 1 - 1-correspondence with a quintuplet
(7, £, Q,¢, V) of geomerrical objects living on bundles over physical spacetime
M = M/G. Moreover, explicit formulae for T are given in terms of classifying ob-
jects.

1. INTRODUCTION

During the last years a lot of work on dimensional reduction of field theories
has been done. At one hand dimensional reduction of pure gauge theories has
been investigated see, [1], [2], [3], [4] and references therein. On the other
hand Kaluza-Klein theories (dimensional reduction of gravity) have been extensi-
vely studied, both from a more intuitive and from a mathematical (geometrical)
point of view, for the latter see [5], [6] and references therein. In both cases
the starting point is the same. One has a multidimensional universe M with a sym-
metry group G acting on M in a sufficiently regular way and considers a field
theory on M, whose configurations are supposed to be G-invariant. Then one
has to solve two problems:

1. Classification of G -invariant configurations,

2. Reduction of the action — due to G-invariance — to an action on physical
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space time M= M/G.

Doing this one obtains interesting unification schemes in both above mentioned
cases. Obviously, one can also combine the two cases and consider Einstein-
-Yang-Mills systems [7].

In this paper we start to investigate dimensional reduction of a generalized
gravitational theory, namely Einstein-Cartan theory. For an excellent analysis
of this theory see [8]. As far as we know, up to now only special cases of theo-
ries of this tvpe have been studied within the dimensional reduction scheme,
see for example [9]. Thus, the main point of this paper is to give a full classifica-
tion of G-invariant configurations of Einstein-Cartan theory on a multidimen-
sional universe.

A second point is the following: In the geometrical approach to Kaluza-Klein
theories as developed in [5] one has a clear understanding of the structures one
deals with, but, finally, all calculations are done using local n-bein-techniques.
In this paper we show that similar techniques as developed in [3] for gauge theo-
ries can be used here, and that all local considerations can be avoided. For that
purpose we use the gauge theoretical formulation of gravity in the spirit of [10].

2. EINSTEIN-CARTAN THEORY ON A MULTIDIMENSIONAL UNIVERSE

Let M be a n-dimensional manifold and ¢ a compact, connected Lie group
acting differentiably to the left on M:

(1.1) MxCDix,g)—b(x,g)EM.

For clearness of presentation we assume G to act without fix point, thus MM, G)
is a principal bundle over the orbit space M = M/G with typical fibre G, (the
right action of G on M is defined by Sg =6 _)-

The generalization to the case when the typical fibre is a homogeneous space
is straightforward.

A configuration of Einstein-Cartan theory on M is a pair (7, y), where v is 4
(pseudo)-Riemannian metric on M and 7 is a linear connection on M compatible
with v:

(1.2) Dy=0.

We will treat 7 as a connection form in the reper bundle LM and y as a GL(nn, R)-

-equivariant mapping
(1.3) v LM — (R™M*& (R™)*.

It is well known that the action of G lifts naturally to the bundle space LM. We
denote this lift by
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(1.4) IMxG>D(e,g)— o(e,g) €ELM,

with 0,€ Aut (LM), og(e) =o(e,g).
Now we can define what we mean by a G-invariant configuration:
(1.5a) og*r =7,

* _
(1.5b) ory=17.

Our aim is to classify pairs (7, ) satisfying (1.2) and (1.5).

3. BUNDLE REDUCTIONS AND SPLITTINGS

Suppose we are given a configuration (7, ) satisfying (1.2) and (1.5).
PROPOSITION 3.1. There is a sequence of bundle reductions defined by vy and the
action of G:

2.1 LM — OM — OM — OM,

where OM is the bundle of orthonormal frames over M, OM a principal bundle
with typical fibre O(m)x O(n —m) over M and OM a principal bundle with
typical fibre O(m) over M.

Proof. The first reduction is standard [11], [12]:

2.2) OM :={e€ LM :v(e) = n},

where n € (R™)* ® (R™* is in the standard basis of R" given by n=diag(— 1, + 1,
..., + 1). The second reduction is defined by a splitting of the tangent bundle:

2.3) TM=VeH,
where V is the canonical vertical distribution defined by the right group action,
(24 V=586, xEM,

G-Lie algebra of G, and H is the to V with respect to v orthogonal complement.
Splitting (2.3) is a section of the associated bundle E = OMxo(n)Gm’n, with
Gm,n = 0(n)/(0O(m) x O(n —m)) being the space of orthogonal with respect to
n decompositions of R”. Treating this section as an equivariant mapping

§:0M — G, and fixing one decomposition §'0, given by
(2.5a) R"=RMeR"™ "

we put
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(2.5b) OM :={e€ OM :{(e) = ¢,)-

(For simplicity of notation we write O(n) and O(m) instead of O(n — 1, 1) and
O(m—1,DHNH.

The last reduction is not essential, but convenient. First notice that the canoni-
cal projection O(m) x O(n —m) —> O(n — m) induces a surjective bundle homo-
morphism

(2.6) £:0M(O(m)x O(n —m), M) — OM(O(n —m), M).

Now fix a basis (éa) in G, take the corresponding fundamental vector fields
(ea)x = S;(éa) ay\q perform a standard orthonormalization procedure. The result
is a section s in OM. We put

(2.7 OM :={e€ OM :f(e) = s(p(e))},

where p is the canonical projection in OM. s

PROPOSITION 3.2. There is a natural splitting
(2.8) TOM = Ve f,

induced by vy and by the action of G on OM.

Proof. First notice that OM is G -invariant, and, therefore, it is a principal G-
-bundle over OM, the bundle of orthonormal (with respect to ¥ — the metric
induced by the G-invariant metric v on ]VI) frames on M. The free, right action
of G on OM is defined by b”g := 0 _,.(We denote the restriction of group actions
to subbundles by the same letter). Since o is the lift of § we have the following

commutative diagram:
— X1 ~
oM ———— OM

2.9) m, x,

i !
M ——— i

Now we put

(2.10) V= 5(6)
and
2 S ry-1
(2.11) A, o= ) H, )

Obviously, ¥ and A are differentiable distributions spanning TOM. L]
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COROLLARY 3.1. The splitting (2.8) defines a G-connection in the bundle
oM — OM.

Proof. Obvious. n

We denote the corresponding G-connection form on oM by £ and observe that
¢ is the pull-back under m of the G-connection form defined by the splitting
(2.3).

4. CLASSIFICATION OF G-INVARIANT CONFIGURATIONS

For a given pair (7,7) satisfying (1.2) and (1.5) we have the sequence of
reductions (2.1) and the G-connection (2.8). It is known that a linear con-
nection on LM is reducible to OM if and only if (1.2) is fulfilled [12].

Restricted to OM (1.2) just means that 7 is o(n)-valued. Thus, 7 fulfilling
(1.2) is completely given by its values on OM, and — obviously — also by its
values on the subbundle OM.

On the other hand < is constant on OM, so that the classification problem
is now reduced to characterizing the restriction of 7 to OM. For that purpose
we use the decomposition [11]

(3.1) T=w+aq,

where w is the Levi-Civita connection form corresponding to 7y and « is a tensorial
1-form of type Ad(GI(n,R)) with values in gl(n, R). We shall denote the
restrictions of w and « to OM by the same letters. Notice that (1.2) and (1.5)
imply

(3.2a) og*w = W,
(3.2b) og*a =aq.

PROPOSITION 4.1. The I-form « is completely characterized by
1. A Mapping

(3.3a) OM > e— ¥(e) € G*s o(n),
satisfying
(3.3b) Ty = Ad'g™(W),

where Ad’ denotes the coadjoint representation of G in G*.
2. A o(n)-valued 1-form on OM

(3.4) T,0M 3 X — &(X) € o(n).
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Proof. « is completely characterized by its values on OM. We decompose « on
OM due to (2.8) and put:

(3.5) Y(e)A4) := (a,;)e(b“;(A)), AE6,

(3.6) (X) 1= (o), (XF),

% ©

where X# is the horizontal with respect to § lift of X € T?OM. To prove (3.3b)
we use the G-invariance (3.2b) of & and the fact that

(3.7) . =3 00 oAdg,
g e
which can be easily verified. Then we have
Vo, 04 = (@5 (05 (A =

B (al‘;)ﬁg(e) (Eg o Ue o Ad g(A)) =

= (6g*al7)e(6e o Adg(4)) =

= \I/e(Ad g(A)).
We are left with proving that definition (3.6) is correct. But this is a simple conse-
quence of (3.2b). ]

It remains to analyze w.

PROPOSITION 4.2. On OM we have

((2), w(Y) (X)) =
(3.8)
= —(3(Y),d3(Z, X)) + (3(2), dO(X, Y + (¥(X), dd (Y, Z)),
where X, Y, Z& TOM, O is the canonical 1-form [11)on OM and () is the scalar
product on R" given by n.

Proof. On OM w is completely determined by the equation dd + w Ad =0,
(vanishing of torsion).

(3.8) is obtained by solving this equation with respect to w — a standard

procedure which we omit here. u

Formula (3.8) says that w is completely determined by & and d¥¢. For & we
have:

PROPOSITION 4.3. The soldering form ¢ is on oM completely characterized by:
1. A mapping



CLASSIFICATION OF G- INVARIANT CONFIGURATIONS, ETC. 45

(3.92) OM>e— ¢(e)€ 6*@ R"™ ™,
satisfying
(3:9b) gr¢=Ad'g ).

2. The soldering form © on OM, with

(3.9¢) 85= x;@.

Proof. ® is completely characterized by its values on OM. Due to (2.8) we put:
(3.10) d(e)A) = (19‘7)8(5;(A)), A€G6,

3 . ]
3.1D T(X) 1= (95),(X7),

where again X# is the horizontal with respect to £ lift of X.
Using the definition of ¥ and the fact that e is an adapted frame we have:

d)(e)(A):e—]OTTIIOGQ(A)ze”IOS' (A)e R ™,

m C)]

Formula (3.9b) is shown in the same way as (3.3b). Definition (3.11) is correct
because ¥ is G-invariant. (9 is invariant under natural lifts of arbitrary diffeo-
morphisms of M!).

It remains to show that J coincides with the soldering form on OM. Treating
e and & as mappings [11], e :R"— T,,](e)M’ € .R" — 7;2(8)]17, we have
e'er:E_l o,

Using thisand x; o x; = 1r'2 o n;, see (2.9), we have 5?(x'l(X)) =z 1, x'2 o x'l(X) =
=e Tom(X) = (9, (X), for XeA. .

Now we want to calculate «w on OM. For that purpose we use (2.8) and the
following natural — with respect to (2.5a) — decomposition of the Lie algebra
o(n):

(3.12a) on)y=o(m)eon—m)em,

where

(3.12b) m:= ;A€ L(R™ R™)

Being o(n)-valued «w has three components, w!=w®™ 2= "™

wl= M, Moreover, we will use the following:

and
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LEMMA 4 .1. There exist canonical isomorphisms
(3.13a) i, (A)* — (R™)*,
(3.13b) j, :RAD* — o(m),

where (f[;)* is the vector space dual to I:I"3 = I:Ie/ker 7r'1.

Proof. There exists a canonical (horizontal with respect to the Levi-Civita con-
nection @ on OJVI) vector field Z (with values in (R™*) on OM, such that

S(H=id . .
. . LRO,RT) . .
This field defines an isomorphism of vector space:
(3.14) 2 (H)* — (R™*,

where HE is the horizontal with respect to & subspace of 7}01171. Taking the

horizontal (with respecto to £) lift of ﬁg to Fle, we get an isomorphism er~= H;

which implies (A,)* = (fI))*. Combining this with (3.14), we get the isomorphism
2
i. (3.13b) is obtained by taking j : = 71 oAi,fi=diag(—1,1,...,1) being the

Minkowski metric on R™. u

PROPOSITION 4.4. The decomposition due to (2.8) of the o(m)-component w!
yields:

(3.15) 1. wp=x}G € A*e o(m),
with & being the Levi-Civita connection on OM.
0 ~
(3.16) 2. F*wh=—(¢*n) o j(E) EAOM e 0(m) ® G*,
where ¢*n : 6 —> G* is the by ¢ induced scalar product on 6 and E is the curva-
ture form of k.
Proof. The first point is obvious because of (3.9¢). Using the known fact [11]
that
3.17 ver [Z, X]e = — 26;(5 (Z, X)),

where Z, X €A and ver ( +) means the vertical component with respect to £,
formula (3.8) gives immediately:

(3.18) (O5(2), wp(Y) F(X)) = — (9 (Y), $(Z(Z, X)), YE V.
Inserting

E(Z,X) = E(* 0 95(2), i* 0 9 (X)) = (9 5(2), J(Z) (X}
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into (3.17) gives (3.16). L]

PROPOSITION 4.5. The decomposition of w? yields:

(3.19) I wh=—1/2(Dpo¢" ' —(Dgpo¢ H)eA*o 0(n —m),
where D¢ = d¢ + ad'(£)$, with ad’ being the coadjoint representation of G in G*.
2. ¢*no(¢*loa*w§7°¢)=—1/2{¢*noad—

(320 — (¢*n oad) B+ (p*no ad)Tn}E/i OM ©6* ¢ 6* & G*

where for A, B, CE€ 6, ¢*noad (4, B, C) = (¢(A), (B, CD)) and (¢*nop 1o
o 5*0)%70 WA, B, C) = (¢(A), 6*@%;(B)¢(C)), Tij are transpositions in the tensor
product 6*® 6*e G*.

Proof. 1. Taking Y € H and X,Z € V, generated by A, B € 6, we get from (3.8):

(3.21) ($(B), w3(Y)$(A)) =~1/2($(B), Y ($(4))) + 1/2(¢(A), ¥ (6(B)))

But Y(¢(A4)) = Y(¢)(A) = D$(Y)(A), by the definition of the covariant derivati-
ve [11]. Inserting this into (3.21) gives (3.19).
2. ForX,Z, Ye 17, generated by 4, B, C € 6, we have from (3.8)

($(B), 5*w3(O)p(A)) =

(322 = —1/2 {¢(B), Y(#(4))) —(¢(A), Y ($(B))) —($(O), X ((B)))} .
But
d
Y(¢(4), = T (0, prc(@NA) =
d
= ¢,(Ad (exp 1C)(A4)) =
dtlt:O
= ad'C(¢)}(4).
Inserting this into (3.22) gives (3.20). ]

Remark 4.1. The right-hand-side of (3.20) is the Levi-Civita connection of the
metric on G induced by the scalar product ¢*n on G.

Of course, in the general case those connections will be different for each
orbit of G on M. '

PROPOSITION 4.6. The decomposition of w? yields:
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(3.23) . wh=—¢oleid)oZchH*e (R")*e R" ™",

2. F*wh=1/2{icD¢o¢ ! +(oDpog H}o
(3.24) 0
cQEANOMe (R™*e R™.
(In fact we have written down only the L(R™ R" ™)-component of w°, see
(3.12b)).

Proof. 1. Taking X, YEH and Z € I7, generated by A € G, we get from (3.8)
(3.25) ($(A4), wH(Y) 95X)) =—1/2 ¢ ), 95 (X, YI).

But 3 5([X, Y] = ¢((i 9 id) o Z(35(X), Y)).
2. Taking X€H, Y, Z€ V, generated by B, A € G, we have from (3.8):

($(A), T*wH(B) 9,(X)y = 1/2 {p(4), DH(X)B)) +
+(¢(B), DS(X)(A).
To obtain from this (3.24) we use

D$(X)(A) = D(i*95(X)NA) = (i o D) (A) 4 (X). "

Propositions 4.4, 4.5 and 4.6 give explicit formulae for the Levi-Civita-connec-
tion-part of 7, which will be necessary for investigating field dynamics. Moreover,
summarizing Cor. 3.1, Propositions 4.1, 4.3, 4.4, 4.5 and 4.6 we obtain the

CLASSIFICATION THEOREM. A G-invariant Einstein-Cartan configuration (7,7y)
is in 1-1-correspondence with a quintuplet of geometrical objects (7, £, &, ¢, V),
where T is the induced Einstein-Cartan configuration on OM, & a G-principal con-
nection in OM — Oﬂ, Qe /\ oM o(o(n—m)o M) and ¢ and ¥V are vector-
-space valued, G-equivariant functions on oM defined by (3.10) and (3.5).

Proof. The only point which remained to show is how 7 is obtained. We de-
compose & (see (3.4)) due to (3.12a) and put: 7= + &M The remaining

two components of & give &. m

Remark 4.2. A priori classifying configurations of two different G-invariant
configurations are living on different reduced bundles, because every -y gives an
individual OM. However, we may distinquish one, say (TO, 70), and — by a verti-
cal automorphism f of LM - relate every configuration (7,7v) to v, by taking
the gauge-equivalent configuration (7', 7o) With 7' = B*r.

In that way all G-invariant configurations will be classified in terms of objects
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living on the same reduced bundle oM (resp. 0/171) defined by Yo
In a next paper we shall analyze torsion and curvature of G -invariant Einstein-
-Cartan configurations and discuss dynamical aspects.
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